skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Megow, Nicole"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Megow, Nicole; Smith, Adam (Ed.)
    We prove that for some constant a > 1, for all k ≤ a, MATIME[n^{k(1+o(1))}]/1 ⊄ SIZE[O(n^k)], for some specific o(1) function. This is a super linear polynomial circuit lower bound. Previously, Santhanam [Santhanam, 2007] showed that there exists a constant c>1 such that for all k>1: MATIME[n^{ck}]/1 ⊄ SIZE[O(n^k)]. Inherently to Santhanam’s proof, c is a large constant and there is no upper bound on c. Using ideas from Murray and Williams [Murray and Williams, 2018], one can show for all k>1: MATIME [n^{10 k²}]/1 ⊄ SIZE[O(n^k)]. To prove this result, we construct the first PCP for SPACE[n] with quasi-linear verifier time: our PCP has a Õ(n) time verifier, Õ(n) space prover, O(log(n)) queries, and polynomial alphabet size. Prior to this work, PCPs for SPACE[O(n)] had verifiers that run in Ω(n²) time. This PCP also proves that NE has MIP verifiers which run in time Õ(n). 
    more » « less
  2. Megow, Nicole; Smith, Adam (Ed.)
    We consider spin systems on general n-vertex graphs of unbounded degree and explore the effects of spectral independence on the rate of convergence to equilibrium of global Markov chains. Spectral independence is a novel way of quantifying the decay of correlations in spin system models, which has significantly advanced the study of Markov chains for spin systems. We prove that whenever spectral independence holds, the popular Swendsen-Wang dynamics for the q-state ferromagnetic Potts model on graphs of maximum degree Δ, where Δ is allowed to grow with n, converges in O((Δ log n)^c) steps where c > 0 is a constant independent of Δ and n. We also show a similar mixing time bound for the block dynamics of general spin systems, again assuming that spectral independence holds. Finally, for monotone spin systems such as the Ising model and the hardcore model on bipartite graphs, we show that spectral independence implies that the mixing time of the systematic scan dynamics is O(Δ^c log n) for a constant c > 0 independent of Δ and n. Systematic scan dynamics are widely popular but are notoriously difficult to analyze. This result implies optimal O(log n) mixing time bounds for any systematic scan dynamics of the ferromagnetic Ising model on general graphs up to the tree uniqueness threshold. Our main technical contribution is an improved factorization of the entropy functional: this is the common starting point for all our proofs. Specifically, we establish the so-called k-partite factorization of entropy with a constant that depends polynomially on the maximum degree of the graph. 
    more » « less
  3. Megow, Nicole; Smith, Adam (Ed.)
    Maximum weight independent set (MWIS) admits a 1/k-approximation in inductively k-independent graphs [Karhan Akcoglu et al., 2002; Ye and Borodin, 2012] and a 1/(2k)-approximation in k-perfectly orientable graphs [Kammer and Tholey, 2014]. These are a parameterized class of graphs that generalize k-degenerate graphs, chordal graphs, and intersection graphs of various geometric shapes such as intervals, pseudo-disks, and several others [Ye and Borodin, 2012; Kammer and Tholey, 2014]. We consider a generalization of MWIS to a submodular objective. Given a graph G = (V,E) and a non-negative submodular function f: 2^V → ℝ_+, the goal is to approximately solve max_{S ∈ ℐ_G} f(S) where ℐ_G is the set of independent sets of G. We obtain an Ω(1/k)-approximation for this problem in the two mentioned graph classes. The first approach is via the multilinear relaxation framework and a simple contention resolution scheme, and this results in a randomized algorithm with approximation ratio at least 1/e(k+1). This approach also yields parallel (or low-adaptivity) approximations. Motivated by the goal of designing efficient and deterministic algorithms, we describe two other algorithms for inductively k-independent graphs that are inspired by work on streaming algorithms: a preemptive greedy algorithm and a primal-dual algorithm. In addition to being simpler and faster, these algorithms, in the monotone submodular case, yield the first deterministic constant factor approximations for various special cases that have been previously considered such as intersection graphs of intervals, disks and pseudo-disks. 
    more » « less
  4. Megow, Nicole; Smith, Adam (Ed.)
    The celebrated IP = PSPACE Theorem gives an efficient interactive proof for any bounded-space algorithm. In this work we study interactive proofs for non-deterministic bounded space computations. While Savitch’s Theorem shows that nondeterministic bounded-space algorithms can be simulated by deterministic bounded-space algorithms, this simulation has a quadratic overhead. We give interactive protocols for nondeterministic algorithms directly to get faster verifiers. More specifically, for any non-deterministic space S algorithm, we construct an interactive proof in which the verifier runs in time Õ(n+S²). This improves on the best previous bound of Õ(n+S³) and matches the result for deterministic space bounded algorithms, up to polylog(S) factors. We further generalize to alternating bounded space algorithms. For any language L decided by a time T, space S algorithm that uses d alternations, we construct an interactive proof in which the verifier runs in time Õ(n + S log(T) + S d) and the prover runs in time 2^O(S). For d = O(log(T)), this matches the best known interactive proofs for deterministic algorithms, up to polylog(S) factors, and improves on the previous best verifier time for nondeterministic algorithms by a factor of log(T). We also improve the best prior verifier time for unbounded alternations by a factor of S. Using known connections of bounded alternation algorithms to bounded depth circuits, we also obtain faster verifiers for bounded depth circuits with unbounded fan-in. 
    more » « less
  5. Megow, Nicole; Smith, Adam (Ed.)
    We provide new approximation algorithms for the Red-Blue Set Cover and Circuit Minimum Monotone Satisfying Assignment (MMSA) problems. Our algorithm for Red-Blue Set Cover achieves Õ(m^{1/3})-approximation improving on the Õ(m^{1/2})-approximation due to Elkin and Peleg (where m is the number of sets). Our approximation algorithm for MMSA_t (for circuits of depth t) gives an Õ(N^{1-δ}) approximation for δ = 1/3 2^{3-⌈t/2⌉}, where N is the number of gates and variables. No non-trivial approximation algorithms for MMSA_t with t ≥ 4 were previously known. We complement these results with lower bounds for these problems: For Red-Blue Set Cover, we provide a nearly approximation preserving reduction from Min k-Union that gives an Ω(m^{1/4 - ε}) hardness under the Dense-vs-Random conjecture, while for MMSA we sketch a proof that an SDP relaxation strengthened by Sherali-Adams has an integrality gap of N^{1-ε} where ε → 0 as the circuit depth t → ∞. 
    more » « less
  6. Megow, Nicole; Smith, Adam (Ed.)
    Given a matroid M = (E,I), and a total ordering over the elements E, a broken circuit is a circuit where the smallest element is removed and an NBC independent set is an independent set in I with no broken circuit. The set of NBC independent sets of any matroid M define a simplicial complex called the broken circuit complex which has been the subject of intense study in combinatorics. Recently, Adiprasito, Huh and Katz showed that the face of numbers of any broken circuit complex form a log-concave sequence, proving a long-standing conjecture of Rota. We study counting and optimization problems on NBC bases of a generic matroid. We find several fundamental differences with the independent set complex: for example, we show that it is NP-hard to find the max-weight NBC base of a matroid or that the convex hull of NBC bases of a matroid has edges of arbitrary large length. We also give evidence that the natural down-up walk on the space of NBC bases of a matroid may not mix rapidly by showing that for some family of matroids it is NP-hard to count the number of NBC bases after certain conditionings. 
    more » « less
  7. Megow, Nicole; Smith, Adam D. (Ed.)
  8. Megow, Nicole; Smith, Adam (Ed.)
    We study the question of local testability of low (constant) degree functions from a product domain 𝒮_1 × … × 𝒮_n to a field 𝔽, where 𝒮_i ⊆ 𝔽 can be arbitrary constant sized sets. We show that this family is locally testable when the grid is "symmetric". That is, if 𝒮_i = 𝒮 for all i, there is a probabilistic algorithm using constantly many queries that distinguishes whether f has a polynomial representation of degree at most d or is Ω(1)-far from having this property. In contrast, we show that there exist asymmetric grids with |𝒮_1| = ⋯ = |𝒮_n| = 3 for which testing requires ω_n(1) queries, thereby establishing that even in the context of polynomials, local testing depends on the structure of the domain and not just the distance of the underlying code. The low-degree testing problem has been studied extensively over the years and a wide variety of tools have been applied to propose and analyze tests. Our work introduces yet another new connection in this rich field, by building low-degree tests out of tests for "junta-degrees". A function f:𝒮_1 × ⋯ × 𝒮_n → 𝒢, for an abelian group 𝒢 is said to be a junta-degree-d function if it is a sum of d-juntas. We derive our low-degree test by giving a new local test for junta-degree-d functions. For the analysis of our tests, we deduce a small-set expansion theorem for spherical/hamming noise over large grids, which may be of independent interest. 
    more » « less
  9. Megow, Nicole; Smith, Adam (Ed.)
    Structural balance theory studies stability in networks. Given a n-vertex complete graph G = (V,E) whose edges are labeled positive or negative, the graph is considered balanced if every triangle either consists of three positive edges (three mutual "friends"), or one positive edge and two negative edges (two "friends" with a common "enemy"). From a computational perspective, structural balance turns out to be a special case of correlation clustering with the number of clusters at most two. The two main algorithmic problems of interest are: (i) detecting whether a given graph is balanced, or (ii) finding a partition that approximates the frustration index, i.e., the minimum number of edge flips that turn the graph balanced. We study these problems in the streaming model where edges are given one by one and focus on memory efficiency. We provide randomized single-pass algorithms for: (i) determining whether an input graph is balanced with O(log n) memory, and (ii) finding a partition that induces a (1 + ε)-approximation to the frustration index with O(n ⋅ polylog(n)) memory. We further provide several new lower bounds, complementing different aspects of our algorithms such as the need for randomization or approximation. To obtain our main results, we develop a method using pseudorandom generators (PRGs) to sample edges between independently-chosen vertices in graph streaming. Furthermore, our algorithm that approximates the frustration index improves the running time of the state-of-the-art correlation clustering with two clusters (Giotis-Guruswami algorithm [SODA 2006]) from n^O(1/ε²) to O(n²log³n/ε² + n log n ⋅ (1/ε)^O(1/ε⁴)) time for (1+ε)-approximation. These results may be of independent interest. 
    more » « less
  10. Megow, Nicole; Smith, Adam (Ed.)
    Graph sketching is a powerful paradigm for analyzing graph structure via linear measurements introduced by Ahn, Guha, and McGregor (SODA'12) that has since found numerous applications in streaming, distributed computing, and massively parallel algorithms, among others. Graph sketching has proven to be quite successful for various problems such as connectivity, minimum spanning trees, edge or vertex connectivity, and cut or spectral sparsifiers. Yet, the problem of approximating shortest path metric of a graph, and specifically computing a spanner, is notably missing from the list of successes. This has turned the status of this fundamental problem into one of the most longstanding open questions in this area. We present a partial explanation of this lack of success by proving a strong lower bound for a large family of graph sketching algorithms that encompasses prior work on spanners and many (but importantly not also all) related cut-based problems mentioned above. Our lower bound matches the algorithmic bounds of the recent result of Filtser, Kapralov, and Nouri (SODA'21), up to lower order terms, for constructing spanners via the same graph sketching family. This establishes near-optimality of these bounds, at least restricted to this family of graph sketching techniques, and makes progress on a conjecture posed in this latter work. 
    more » « less